山东可靠性测试,抗盐雾腐蚀实验
有多少故障条件得到解决而没有再次发生。该指标的计算公式为X = A1 / A2
其中,A1是试验期间解决且不再发生的故障总数,A2是检测到的故障总数。显然,每个组织都希望该值等于1。然而,在现实生活中,有些故障次并没有得到正确解决;故障再次发生的次数越多,该指标就越接近零。标准建议监控该指标的趋势,而不是将其作为时间快照。
故障密度
在定义的试用期内发现的故障数量与系统规模的比较。计算公式如下
X = A / B
A是检测到的故障数量,B是系统规模。这是一个为重要的趋势指标。测试阶段越晚,我们希望该指标越低。在讨论故障密度时必须注意两点。对同一缺陷的重复报告会使结果失真,错误报告也是如此(在这种情况下,并不存在真正的缺陷,而是由测试环境、不良测试用例或其他外部问题导致的故障)。这个指标可以很好地衡量测试用例的有效性。一种不那么友好的观点可能认为,它是对代码发布时有多糟糕的一种衡量。
故障排除率(Fault removal) 衡量有多少缺陷得到纠正。该指标由两部分组成:一部分是实际发现的缺陷,另一部分是潜在缺陷的估计数量。计算公式为X = A1 / A2,Y = A1 / A3
其中,A1为已纠正缺陷的数量,A2为实际发现缺陷的总数,A3为系统中潜在缺陷的估计总数。实际上,个公式是衡量有多少已发现的缺陷没有被消除。如果X的值为1,则表示发现的每一个缺陷都被清除了;X的值越小,则表示系统中残留的缺陷越多。与其他一些指标一样,如果将其视为一种趋势,而不是孤立的时间,那么这种测量就更有意义。
如果Y的估计值大于1,企业可能需要调查软件是否存在特别多的缺陷,或者基于可靠性增长模型的估计是否有误。如果Y明显小于1,企业可能需要调查测试是否不足以发现所有缺陷。请记住,重复的事故报告会影响这一指标。Y越接近1.0,系统中剩余的缺陷就越少(假设可靠性模型是合适的)。
————————————————